## Physics 101: Lecture 04

## Kinematics + Dynamics

## - Today's lecture will cover Textbook Chapter 4

If you are new to the course, please read the course description on the course web page (and email policy from Lecture 1 note)!

neptune

## Review

oKinematics : Description of Motion
$\Rightarrow$ Position
$\rightarrow$ Displacement
$\Rightarrow$ Velocity $v=D x / D t$
» average
» instantaneous
$\Rightarrow$ Acceleration $\mathrm{a}=\mathrm{Dv} / \mathrm{Dt}$
» average
» instantaneous
$\Rightarrow$ Relative velocity: $\mathrm{v}_{\mathrm{ac}}=\mathrm{v}_{\mathrm{ab}}+\mathrm{v}_{\mathrm{bc}}$

## Preflight 4.1 ...interpreting graphs...


-Which x vs t plot shows positive acceleration? 89\% got this correct!!!!
"This shows that more distance is being covered per second as the graph proceeds. This means that the speed of the car is increasing which means a positive acceleration."

## Equations for Constant

 Acceleration (text, page 113-114)
$v(\mathrm{~m} / \mathrm{s})$



## Kinematics Example

- A car is traveling $30 \mathrm{~m} / \mathrm{s}$ and applies its breaks to stop after a distance of 150 m .
- How fast is the car going after it has traveled $1 / 2$ the distance ( 75 meters) ?
A) $\mathrm{v}<15 \mathrm{~m} / \mathrm{s}$
B) $v=15 \mathrm{~m} / \mathrm{s}$
C) $v>15 \mathrm{~m} / \mathrm{s}$

$$
\begin{array}{ll}
v^{2}=v_{o}^{2}+2 a \Delta x \\
a=\frac{v_{f}^{2}-v_{o}^{2}}{2(150)}=\frac{-30^{2}}{2(150)} & v_{75}^{2}=30^{2}+\frac{1}{2}\left(-30^{2}\right) \\
v_{75}^{2}=30^{2}+2 a(75) & v_{75}^{2}=\frac{1}{2} 30^{2} \\
v_{75}^{2}=30^{2}+2 \frac{\left(-30^{2}\right)}{2(150)}(75) & v_{75}=\sqrt{\frac{1}{2}} 30=21 m / s
\end{array}
$$

## Acceleration ACT

A car accelerates uniformly from rest. If it travels a distance $D$ in time $t$ then how far will it travel in a time $2 t$ ?
A. D/4
B. D/2
C. D
D. 2D Demo...
E. 4D $\longleftarrow$ Correct $x=1 / 2 a t^{2}$

Follow up question: If the car has speed $v$ at time $t$ then what is the speed at time $2 t$ ?
A. $\mathrm{v} / 4$
B. $v / 2$
C. v
D. $2 \mathrm{v} \longleftarrow$ Correct $\mathrm{v}=\mathrm{at}$
E. 4 v

## Newton's Second Law $\mathrm{F}_{\mathrm{Net}}=\mathrm{ma}$

position and velocity depend on history

## Net Force determines

acceleration

## ACT

- A force $F$ acting on a mass $m_{1}$ results in an acceleration $a_{l}$. The same force acting on a different mass $m_{2}$ results in an acceleration $a_{2}=2 a_{1}$. What is the mass $m_{2}$ ?

(A) $2 m_{1}$
(B) $m_{1}$
(C) $1 / 2 m_{1}$
- $\mathrm{F}_{\mathrm{Net}}=\mathrm{ma}$
- $\mathrm{F}_{\mathrm{Net}}=\mathrm{m}_{1} \mathrm{a}_{1}=\mathrm{m}_{2} \mathrm{a}_{2}=\mathrm{m}_{2}\left(2 \mathrm{a}_{1}\right)$
- Therefore, $m_{2}=m_{1} / 2$
- Or in words...twice the acceleration means half the mass


## Example:

A tractor $T(\mathrm{~m}=300 \mathrm{Kg})$ is pulling a trailer $\mathrm{M}(\mathrm{m}=400 \mathrm{Kg})$. It starts from rest and pulls with constant force such that there is a positive acceleration of $1.5 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the horizontal thrust force on the tractor due to the ground.

## X direction: Tractor <br> $\mathrm{F}_{\mathrm{Net}}=\mathrm{ma}$ <br> $\mathrm{F}_{\mathrm{Th}}-\mathrm{T}=\mathrm{m}_{\text {tractor }}{ }^{\mathrm{a}}$ <br> $\mathrm{F}_{\mathrm{Th}}=\mathrm{T}+\mathrm{m}_{\text {tractor }} \mathrm{a}^{\mathrm{a}}$

X direction: Trailer
$\mathrm{F}_{\mathrm{Net}}=\mathrm{ma}$
$\mathrm{T}=\mathrm{m}_{\text {trailer }} \mathrm{a}$

$$
\mathrm{F}_{\mathrm{Th}}=1050 \mathrm{~N}
$$



## Combine:

$\mathrm{F}_{\mathrm{Th}}=\mathrm{m}_{\text {trailer }} \mathrm{a}+\mathrm{m}_{\text {tractor }} \mathrm{a}$
$\mathrm{F}_{\text {Th }}=\left(\mathrm{m}_{\text {trailert }} \mathrm{m}_{\text {tractor }}\right) \mathrm{a}$
Physics 101: Lecture 4, Pg 9

## Net Force ACT

Compare $F_{\text {tractor }}$ the net force on the tractor, with $\mathrm{F}_{\text {trailer }}$ the net force on the trailer from the previous problem.
A) $\mathrm{F}_{\text {tractor }}>\mathrm{F}_{\text {trailor }}$

$$
\mathrm{SF}=\mathrm{ma}
$$

B) $\mathrm{F}_{\text {tractor }}=\mathrm{F}_{\text {trailor }}$

$$
F_{\text {tractor }}=m_{\text {tractor }} \mathrm{a}
$$

$$
=(300 \mathrm{~kg})\left(1.5 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

$$
=450 \mathrm{~N}
$$

$$
F_{\text {trailer }}=m_{\text {trailer }} \mathrm{a}
$$

$$
=(400 \mathrm{~kg})(1.5 \mathrm{~m} / \mathrm{s} 2)
$$

$$
=600 \mathrm{~N}
$$

## Pulley Example

- Two boxes are connected by a string over a frictionless pulley. Box 1 has mass 1.5 kg , box 2 has a mass of 2.5 kg . Box 2 starts from rest 0.8 meters above the table, how long does it take to hit the table.
-Compare the acceleration of boxes 1 and 2

$$
\text { A) }\left|a_{1}\right|>\mid a_{2} \quad \text { B) }\left|a_{1}\right|=\left|a_{2}\right|
$$

1) $\mathrm{T}-\mathrm{m}_{1} \mathrm{~g}=\mathrm{m}_{1} \mathrm{a}_{1}$
2) $T-m_{2} g=-m_{2} a_{1}$
3) $T=m_{2} g-m_{2} a_{1}$
4) $m_{2} g-m_{2} a_{1}-m_{1} g=m_{1} a_{1}$
$a_{1}=\left(m_{2}-m_{1}\right) g /\left(m_{1}+m_{2}\right)$


## Pulley Example

- Two boxes are connected by a string over a frictionless pulley. Box 1 has mass 1.5 kg , box 2 has a mass of 2.5 kg . Box 2 starts from rest 0.8 meters above the table, how long does it take to hit the table.
-Compare the acceleration of boxes 1 and 2

$$
\text { A) }\left|a_{1}\right|>\left|a_{2}\right| \quad \text { B) }\left|a_{1}\right|=\left|a_{2}\right| \quad \text { C) }\left|a_{1}\right|<\left|a_{2}\right|
$$

$a_{1}=\left(m_{2}-m_{1}\right) g /\left(m_{1}+m_{2}\right)$
$\mathrm{a}=2.45 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta x=v_{0} t+1 / 2 a t^{2}$
$\Delta x=1 / 2 a t^{2}$
$t=\operatorname{sqrt}(2 \Delta x / a)$
$\mathrm{t}=0.81$ seconds


Physics 101: Lecture 4, Pg 12

## Summary of Concepts

- Constant Acceleration

$$
\begin{aligned}
& >\mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0} \mathrm{t}+1 / 2 \mathrm{at}^{2} \\
& >\mathrm{v}=\mathrm{v}_{0}+\mathrm{at} \\
& >\mathrm{v}^{2}=\mathrm{v}_{0}^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{0}\right)
\end{aligned}
$$

- $F=m a$
- Draw Free Body Diagram
- Write down equations
- Solve
- Next time: textbook section 4.3, 4.5

